Developing an online learning platform and
parameterized contents for Python
Programming Language

2015 Summer

QuizPET Python Learning System is a Python Learning system providing
parameterized programming exercises. Here is the link
(http://columbus.exp.sis.pitt.edu/quizpet/). Meanwhile, we also created the
contents (questions) for this platform organized in a hierarchical way, paying
special attention to the relation among contents from a user modeling
perspective.

Overview
QuizPET has following characteristics:
* Each exercise is from a template with some parameters generated
randomly each time a student attempts it.
* Each exercise evaluates student comprehension of a piece of code.
* Each exercise corresponds to a URL link. So it can be easily embedded in
Mastery Grid or other systems.
* |t reports students’ responses to user model automatically, so that we can
tracked students’ correctness and response time.

Interface

The interface is created involving several .jsp, .js, .htm, .css files following the
same style and template as QuizJET (a learning platform for Java Programming
language, in order to keep consistency with existed systems in the lab).

Here is a question for the topic Loops: Here is a question for List:

Tester.py Tester.py

i def modify(the list):
i=0 the 1ist[0] = the list[0].replace("8", "0")

while i < 2: return the list

j =0 def main():

while j < 1: outer_list = ["I have watched 8 movies."]
print(j) print(outer_list[0])
j=3+1 modify(outer_list)

i=1i+1 print(outer_list[0])

outer_ list = modify(outer_ list)
print(outer_ list[0])

What is the output? main()

Be careful of the whitespace(space,newline) in your answer.

What is the output?

Be careful of the whitespace(space,newline) in your answer.

2l Submit |

2 Submit |

Infrastructure

The overall infrastructure consists of the interface component, the backend
Application service component, the backend user modeling service component,
and the content and user database components. It is summarized as follows:

QuizPET interface QuizPET Backend
Tester.py
vop - 1 =t == =6 displayQuiz.jsp: displays an exercise Content
resuie = | Database
while i < 5: ‘
result += "ha" + sep .
L1 EvaluateAnswer.java:
et ia the thel ke of 2 =k =l==® - evaluates a student’s answer
D= -- reports to user model o we Calls
Tester.py \
1 \‘ direct link
i o . . . A
i e e P I displayQuizAns.jsp: \
S -- displays the answer of an exercise ‘I
WRONG! |
Your Answer s 1 -
Correct Answer is: . *- ’
" User Model Services User
Database

Here is a more detailed explanation of the mechanism:
* Once astudent clicks a question, the “displayQuiz.jsp” will query the
content database and display the corresponding page;
* When a student clicks the “submit” button, the service
“EvaluateAnswer.java” is called from “displayQuiz.jsp”. In the backend, it

runs an interpreter on the corresponding Python code, gets the correct
answer, compares it with the student’s answer, and returns the judgment
to “displayQuizAns.jsp”. Meanwhile, it also reports to the user model by
calling the related user model services.

* The user model service stores students’ actions with detailed information
including correctness, session, time (etc) into a centralized user database.

* “displayQuizAns.jsp” receives the call from “EvaluateAnswer.java”, and
then it displays the answer using the similar template as “displayQuiz.jsp”.

* If a student clicks the “Try Again” button, it will be calling “displayQuiz.jsp”
again, with a new instantiation of the variables of the same question
template, and starts a new circle described as above.

Hierarchy of the Domain and Content Model

A domain model specifies the knowledge components (skills, concepts) required
to be learned for the domain. A content model specifies the mapping between
each piece of content (question, example, etc.) and the underlying required
knowledge components. The design of QuizPET follows two level hierarchies as
many of the tutoring systems. Each piece of content can be indexed in both topic
level and concept level:

* Coarse-grained level, i.e., topics
* Fine-grained level, i.e., concept

This helps student have a better sense of the syllabus, organization, and better
manage their studying pace. Depending on the teachers’ need, the same content
can be re-organized into different topics.

Design Principles of the Contents
We design and create questions following the below principles:
* Questions are designed from easy to hard (within each topic)
* Questions in the same topic are targeting the most related set of
concepts with different fined-grained learning objectives.
* Questions in latter topics have overlapping concepts with previous
topics in order to help students to review, or deepen the knowledge of
previous concepts by applying in different situations.

Here is an example of how fined-grained differentiation in learning objectives are
addressed in the topic Values and References, different questions addressing
mutable and immutable types are created:

def modify(number): def main(): def modify(the_string):

number = -7 * 2 numbers = [1, 3, 5, 7, 11, 13] the_string = the_string.replace("2", "0")
print (number)

print (numbers) return the_string
return number original = numbers def main():
numbers[1] = 2 outer_ string = "I have watched 2 movies."
def main(): print(original) print(outer_string)
number = -7 original[1l+1] = 4 modify(outer string)
print(number) print (numbers) print(outer_string)
new_number = modify(number outer_string = modify(outer_string)
print (number) main() print(outer_ string)
print(new_number) main()
X What is the output?
main() What is the output?

What is the output?

Here is an example of a question for the topic Classes and Objects. It requires
concepts newly introduced within Classes and Objects, and it also covers three
previous topics:

class Student:
def _ init (self, name, quiz, hw, project):
self.name = name
self.quiz = float(quiz)
self.hw = float(hw)
self.project = float(project)
def get_ name(self):
return self.name
def score(self):
return (self.quiz + self.hw + self.project) / 3.0
def main():
students = []
students.append(Student("Mike", 70, 60, 80))
students.append(Student("Rose", 50, 65, 90))
students.append(Student ("Michele", 60, 50, 65+10))
students.append(Student("Sofia", 80, 65-10, 80))
process subsequent lines of the file
highest = students[0]
for i in range(1l, len(students)):
if students[i].score() > highest.score():
highest = students[i]
print(highest.get_name())
print(int(highest.score()))
main()

What is the output?

Be careful of the whitespace(space,newline) in your answer.

* Variables
* Comparisons
e |f Statement

* Lists

* Loops

* Functions
* String

Contents
Currently, we have QuizPET exercises for 13 topics as follow:

* Variables, Comparisons, If Statement, Logical Operators, Loops, Output
Formatting, Functions, Lists, Strings, Dictionary, Values and References,
Exceptions, Classes and Objects

We have about 45 exercises in total. (Each exercise can be attempted different
times with changes in parameters.) Each topic has 2 to 7 exercises. Here are the
details of the content.

by topic_variables | 0_py_topie it staement a_py_topic osial_operaior PP output formar
q_py_if_elif1
4_py_nested_if_elif1
s
q_py_topic_dictionary
q_py._dict_accessl a_py_topic_functions
o fancarl
o py_topic_lists | by dic q_py_fun_car2
_q_py_topic_loops
|
: s
_py_list n‘_ﬂ q_py_while_loop1 = _ob._carl PR
{_py_add_two_lists1 o
'0_py. topic_exceptions |
1EY._V8 e _eroept
e

