Open Learner Modeling

From PAWS Lab
Revision as of 17:32, 27 January 2018 by Peterb (talk | contribs)
Jump to: navigation, search

About Open Learning Modeling

Open Learner Modeling in ELM-ART

Peter

Open Learner Modeling in InterBook

Peter

Open Learner Modeling with Adaptive Navigation Support in QuizGuide and JavaGuide

In our work with QuizGuide and JavaGuide systems we attempted to merge the power of open learner models with the power of adaptive navigation support. While traditional OLM focus on reflecting student knowledge, we wanted to give students an immediate chance to act. For example, observing that knowledge of a specific topic is too low, a student might want to immediately access learning content that could help to bridge the gap.

QuizGuide is an adaptive front-end to a collection of interactive self-assessment questions in the domain of C programming. The domain model in QuizGuide is formed by 22 topics such as variables, constants or character processing. The system is able to model learner knowledge independently by topic and visualize the state of this learner model through adaptive link annotation of the “target-arrow” icons. The number of arrows in the target reflects the level of knowledge the student has acquired on the topic: the more arrows the target has, the higher the level of knowledge. The intensity of the target’s color shows the relevance of the topic to the current learning goal: the more intense the color is, the more relevant the topic. This interface combined successful features of open learner models and navigation support: it provides a clear presentation of student knowledge by topic while also helping the student to select the optimal topic to work (one that is ready to be explored, but still not mastered).

QuizGuide

Despite a relatively simple adaptation approach, the navigation support provided by QuizGuide resulted in a remarkable impact on student performance and motivation to work with the system. In comparison with QuizPACK (Brusilovsky & Sosnovsky, 2005b), an earlier version of the system which provided access to the same quizzes with no navigation support, the average knowledge gain (a difference between post-test and pre-test results on a 10-point test) for the students using QuizGuide increased from 5.1 to 6.5. By guiding students to the right topics at the right time, the system caused a significant increase in the percentage of correctly answered questions from 35.6% to 44.3% (Brusilovsky & Sosnovsky, 2005a). Most remarkable, however, was an increase in the students’ interest in working with the system. The number of attempts, the percentage of students using the system actively, and the percentage of attempted topics increased significantly (Brusilovsky & Sosnovsky, 2005a). A re-implementation of QuizGuide’s adaptive navigation support approach for SQL (Sosnovsky et al., 2008) and Java programming (Hsiao et al., 2009) confirmed this impact in two other domains.


Multi-Layer Zoomable Learner Models

Peter

Open Social Learner Modeling in Progressor, QuizMAP

Sharon

Multi-Content Open Social Learner Modeling in Progressor+

Sharon

Mastery Grids: Open Source Open Social Learned Modeling Infrastructure

Julio

Rich OLM - Concept-Level OSLM in Mastery Grids

Julio